We

5.2 Operational Channel Capacity

5.10. In Section 3, we have studied how to compute the [eérror probability
P(€) for digital communication systems over DMC. At the end of that
section, we studied how to find the optimal decoder and the corresponding
P(&) for bloek encoding when the channel is used n times to transmit a

. nnel
k-bit info-block. " cha :l Fiecs
code rate = ™y ve wst b '
p(2) Y
A | crhannel g
AL decoder
: M AP clr.coc-ler
N 1. opﬁmql

Lﬁ \owu"‘ P(e )

In this section, our consideration are “reverse”.

5.11. In this and the next subsections, we introduce a quantity called
channel capacity which is crucial in benchmarking communication system.
Recall that, in[Section |2 where source coding was discussed, we were inter-
ested in the minimum rate (in bits per source symbol) to represent a source.
Here, we are interested in the maximum rate (in [bits per channel use) that
can besent through a given/channel [Feliablg

dor't went 0 cOmm. st"'l.h thot con tremsanit @ 2 Gbys Lot

heos 3¥S/. ercor on'.a\o'-]" ’r)/
5.12. Here, reliable communication means arbitrarily small error prob-

ability éan be achieved.)

e This seems to be an impossible goal.

o If the channel introduces errors, how can one correct them all?

* Any correction process is also subject to error, ad infinitum.
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Definition 5.13. Given a DMC, its “operational” channel capacity
is the maximum rate at which [Féeli@ble] communication over the channel(@s
00SS1h

i+ f'o’s'-'ﬂlﬁ Yo come uf with o.prrorr:a"fc n,

Cnroécg Dr'\cl

d:coder.
e The channelsapacity is_the maximum rate in bits per channel use at

which information/can be sent

5.14. Claude Shannon showed, in his 1948 landmark paper, that this op-
erational channel capacity is the same as the information channel capacity
which we will discuss in the next subsection. From this, we can omit the

ith arbitrarily low error probability.

words “operational” and “information” and simply refer to both quantities
as the channel capacity.

Example 5.15. Soon, we will find that the/capacity of a/BSC with crossover
probability p = 08) _irs)_ approximately 0231 181’5{ per channel ise. This means
that for any rate R < 0.531 and any err Ot probability P(£) that we desire,
as long as it is greater than 0, we can find a suitable n, a rate R encoder,
and a corresponding decoder which will yield an error probability that is at
least as low as our set value.

e Usually, for very low value of desired P(€), we may need large value of
n.

Example 5.16. Repetition code is not good enough.

(a) From Figure b, it is clear that repetition coding can not achieve the
capacity of 0.531 bits per channel use. In fact, when we require error
probability to be less than 0.1, the required repetition code needs n > 3.
(For simplicity, let’s assume only odd value of n can be used here.)

However, this means the rate is < % ~ 0.33 which is a lot less than
0.531.

(b) In fact, for any rate > 0, we can see from Figure 8b that communi-
cation system based on repetition coding is not “reliable” according
to Definition [5.12] For example, for rate = 0.02 bits per channel use,
repetition code can’t satisfy the requirement that the error probability
must be less than 1071°. In fact, Figure [8b shows that as we reduce the
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Figure 8: Performance of repetition coding with majority voting at the decoder

error probability to 0, the rate also goes to 0 as well. Therefore, there
is no positive rate that works for all error probability.

However, because the channel capacity is 0.531, there must exist other
encoding techniques which give better error probability than repetition code.
Although Shannon’s result gives us the channel capacity, it does not give us
any explicit instruction on how to construct codes which can achieve that
value.

5.3 Information Channel Capacity

5.17. In Section [5.1], we have studied how to compute the value of mutual
information /(X;Y) between two random variables X and Y. Here, X
and Y are the channel input and output, respectively. We have also seen,
in Example .8, how to compute I(X;Y) when the joint pmf matrix P
is given. Furthermore, we have also worked on Example in which the
value of mutual information is computed from the prior probability vector
p and the channel transition probability matrix Q. This second type of
calculation is crucial in the computation of channel capacity. This kind
of calculation is so important that we change the notation that we use for

mutual information from I(X;Y’) to I(p, Q).
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Definition 5.18. Given a DMC channel, we define its “information” chan-
nel capacity as

C =max[ (X;Y)=max[ (P,Q) ;
p() =

where the maximum is taken over all possible input pmfs p.

e Again, as mentioned in [5.14] Shannon showed that the “information”
channel capacity defined here is equal to the “operational” channel
capacity defined in Definition [5.13]

o Thus, we may drop the word “information” in most discussions of
channel capacity.

Example 5.19. Find the channel capacity of a noiseles@lannel (a
BSC whose crossover probability is p = 0).

o —2 O C = max ICXJY) = max I(ﬁ/Q)
X Y pP(=) =
1 - > 1 T(x,Y) =I( R, Q) =R(x)+HLY) - H(X,Y)

FROO -HIXLY) =RY) - 1R(YIXx)
S~

-

/"""“""-‘au-m:é?- whea X 0 Unifosrm. o

I(_X}\r) =‘-"(.x.) "'o =HLXJ®‘O%ZZ '-‘-1 C=1 Y qc'h.-(ve,é L/ Un;‘FO.rm x.
Example 5.20. Noisy Channel with Nonoverldpping Outputs: “Find the
channel capacity of a DMC whose
Excaple 5.20B A\/ 1 B 3 “« 5

Q—1 1/8 7/8 0 Ogo

2] 0 0 1/32/3% o0
o1
1/% 3 o O o © 1
1 H(X\Y) =0
w T TPea N I(X¥) = H(X) -HIXIY) =HWX)
173 e 3 o
2 To meaximmice H(XW (v-"":ﬂlf\ in i Core will Ca‘so
2/ . mMaximi e I(K;Y})
we Use un;-Farm r:(_ar.)
56
3 ——>. 5 c =log, 2751 bpco

= \052_ 9 L\‘)cu



Review: Seome rotation iavelvia t.v\'i’vor)l

H[x)r.g_rx(‘,‘oﬁtﬂtx) H(_E-J af-riloji.r&
Binay " TH(p) = - Plosat - L= )log, (1-p) H(Lo-t 04 = -ousley 0t -0t los, 00
enteopy In this example, the channel appears to be noisy, but really is not. Even

fmetion though the output of the channel is a random consequence of the input, the

input can be determined from the output, and hence every transmitted bit
can be recovered without error.

Example 5.21. Find the channel capacity of a BSC whose crossover prob-

ability is p = 0.1.
I(Xx;y) =RLY) - H(Y\x) Bip)

— -~
MY IX) =P[o) H(YIX=0) & PIOH(YIX=1)= "|’\°‘_’):.|° "["ﬂl“jz(f’lj
Lt plikO A4 CE

o, By clou ot nl:ff-ﬂ:‘ [P R

There -Fo-rc) +o waxiwize T(X,Y) |, we
"‘\I.:,A +2 aAari e =iy -

[m’ f’]~
G= =
P

To rwoximize Y ), we -L\‘ft-l» 'l-r/ to woke oAifom Y, T heve fore,
- 1-r P c1-
.pQ o [11]=l% %] C=1-Rn(p
%= P [1 z.] K2 , ? A-p 0454
T.—Tr), Uﬂ'\'FQIM X A—
GeY un:'FOIMY! =1-H(0.1) ~0.531

The BSC is a member of a class of channels called symmetric channel.

Definition 5.22. A DMC is called symmetric if (1) all the rows of its
probability transition matrix Q are permutations of each other and (2) so
are the columns.

Example 5.23. For each of the following Q, is the corresponding DMC

symmetric?
0.3 0.2 0.5 0.3 0.2 0.5
0.5 03 0.2 |, 0.5 0.2 0.3 |, [}?2 1?2 1?2]
0.2 0.5 0.3 0.2 0.5 0.3 . N
1t 0.9 1.1 /3y Yy 3
smec.‘t‘r'nc_, not gy..\,,_c{-,;c not fyf\'\meh-’c

{l, ']T Lot Wl'.alu-\y !7mm‘|‘f|. c

wwk\y syy-»n—t.'hric, rnot wcak\y syﬂ\-vg-l'z.'c
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Example 5.24. Find the channel capacity of a DMC whose

The carac’\’c)/ C of a aiw.n DMmc
COn ,DC c&una L/
Q=1|0503 02

c =m;x L(x,Y) 0.2 0.5 0.3
He.fﬁ,
LCX;Y) = UY) - HLYIX) /
e

BH([o-2 0.3 0.5]) =H(ZL)

T 1.4%65

So. we see that $o maximize I(x"Y)_.

we need Yo maximize H(Y).
e ¥rat Yhe wmoximmum
Of course, we know

volue ot 219 PARY 1031\_16] whiceh \’\ﬂf’!nj
w‘r-gn \( s un'l‘FOfM- I'F we Can -F',nd F—

relh makes Y ur\'\r-orm) then it s

C

wh
+re 2 trat 3'1\!!-9 Ca‘-fac.""/-
5 = I Q (6.3 0.2 O.r
- 4 - 1 4 A ©.35 0.3 0.2
L '13_, J:-; 2 _.l "[. 2 3 3 :]
O.2 .5 ©0.>

&Try Uni{:or/: X

ﬁ(‘flx-_-‘c) s '\‘-\nu valve 'Co( Q“ oC

= lorj?_'s -1.9955
“——
1.5¢50

= 0.09as lopcu

emrks T v et find
y  that malkes Y uni'Fofv-:
tren  C < log, 2%\ + ()
and we have to fiad o
different technigue +o

celcvlate C.

Get vaiforn, Y | <« posSs) ble becauve e column sums o3 (O ave ol e 3ame,
Definition 5.25. A DMC is called weakly symmetric if (1) all the rows

of its probability transition matrix Q are permutations of each other and

(2) all the column sums are equal. It should be clear from the definition that a
symmteric channel is automatically weakly

5.26. For a weakly symmetric channel, symmetric.

0210g1|y| _H(£)7

where r is any row from the Q matrix. The capacity is achieved by a uniform

pmf on the channel input. Ex. Soffoe (o4 0.058 0.08

5.27. Properties of channel capacity
(a) C >0

n
(b) € < max{log|X],log|V[}

Qz ©.05 0.9 0.05

0.0L5 0.015 0.95

(o) 1.59 4y
(¢) 2.09 44
(d) 2.59 44
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Example 5.28. Another case where capacity can be easily calculated: Find =0

the channel capacity of a DMC of which pliytherowsjofjits)Qumatrixgareythey
same. l r
| - QA o\ _ \
Q - [1- o 0\] o Qs .

I(X,Y)=0(r)-nlx)
=0

= l -For

R(Yle) =R(X) SH(YIX) =2 pesHLY]x) =H(r) C = mex I(X;Y)
”n S ‘2 ——

H(Y) (@)

I(X;0) =H(Y) = HLY1X) =0 bpeo

g=pQ=[n f —-1Q =preprr...=v(Tpo) =¥

nLY) = Rl
5.29. So far, we worked with toy examples in which finding capacity is
relatively easy. In general, there is mo closed-form solution for computing
capacity. When we have to deal with cases that do not fit in any special
family of Q described in the examples above, the maximum can be found
by standard nonlinear optimization techniques. MATLAS : fmincon

Example 5.30. The capacity of a BAC whose Q(1|0) = 0.9 and Q(0|1) =
0.4 can be found by first realizing that I(X;Y") here is a function of a single
variable: pg. The plot of I(X;Y) as a function of py gives some rough
estimates of the answers. One can also solve for the optimal py by simply
taking derivative of I(X;Y’) and set it equal to 0. This gives the capacity
value of 0.0918 bpcu which is achieved by p = [0.5376, 0.4624].

p(0) = po N AR
p(L) =\L —po 1 °°6:: ST TN

L s e e e

o.2—f————— — 1\

0 01 02 03 04 05 06 07 08 09 1
Po

Gy ]0__ .

Figure 9: Maximization of mutual information to find capacity of a BAC channel. Capacity
of 0.0918 bits is achieved by p = [0.5376, 0.4624]
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Figure 10: Maximization of mutual information to find capacity of a BSC channel. Capacity
of 0.029 bits is achieved by p = [0.5, 0.5]

5.31. Blahut-Arimoto Algorithm [4, Section 10.8]: Alternatively, in
1972, Arimoto [I] and Blahut [2] independently developed an iterative al-
gorithm to help us approximate the pmf p* which achieves capacity C. To
do this, start with any (guess) input pmf : po(x), define a sequence of pmfs
pr(z), 7 =0,1,... according to the following iterative prescription:

(a) ¢ (y) = 2opr (2) Q (y|z) for all y € Y.

(E Q(ylr) log, 45 )

(b) ¢ (x) =2 for all x € &

(c) It can be Sho%‘vn that B
PN—’_\ —_—
log, (Z pr(x ) < C <log, (max Cr (:JU)) .

e If the lower-bound and upper-bound above are close enough. We
take p,(x) as our answer and the corresponding capacity is simply
the average of the two bounds.

e Otherwise, we compute the pmf

_ DPr (z) cr ()
P S S @ @)

forallz € X

and repeat the steps above with index r replaced by r + 1.
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5.32. Shannon’s (Noisy Channel) Coding theorem [Shannon, 1948]

(a) Reliable communication over a (discrete memoryless) channel is possi-
ble if the communication rate R satisfies R < C, where C'is the channel
capacity.

In particular, for any R < C|, there exist codes (encoders and decoders)
with sufficiently large n such that

P (5) < 2—n><E(R)’
where F(R) is
e a positive function of R for R < C and
e completely determined by the channel characteristics
(b) At rates higher than capacity, reliable communication is impossible.
5.33. Significance of Shannon’s (noisy channel) coding theorem:
(a) Express the limit to reliable communication

(b) Provides a yardstick to measure the performance of communication
systems.

e A system performing near capacity is a near optimal system and
does not have much room for improvement.
e On the other hand a system operating far from this fundamental
bound can be improved (mainly through coding techniques).
5.34. Shannon’s nonconstructive proof for his coding theorem

e Shannon introduces a method of proof called random coding.

e Instead of looking for the best possible coding scheme and analyzing
its performance, which is a difficult task,
o all possible coding schemes are considered
x by generating the code randomly with appropriate distribution
o and the performance of the system is averaged over them.

o Then it is proved that if R < C', the average error probability tends
to zero.
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e Again, Shannon proved that

o as long as R < C,
o at any arbitrarily small (but still positive) probability of error,

o one can find (there exist) at least one code (with sufficiently long
block length n) that performs better than the specified probability
of error.

e If we used the scheme suggested and generate a code at random, the
code constructed is likely to be good for long block lengths.

e No structure in the code. Very difficult to decode
5.35. Practical codes:

e In addition to achieving low probabilities of error, useful codes should
be “simple”, so that they can be encoded and decoded efficiently.

e Shannon’s theorem does not provide a practical coding scheme.

e Since Shannon’s paper, a variety of techniques have been used to con-
struct good error correcting codes.

o The entire field of coding theory has been developed during this
search.

e Turbo codes have come close to achieving capacity for Gaussian chan-
nels.
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